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Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner. Answers

without working may gain no credit.
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Figure 1

Figure 1 shows part of the curve with equation y = 
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. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2.
(a) 
Copy and complete the table with the values of y corresponding to x = 0.8 and x = 1.6.

	x
	0
	0.4
	0.8
	1.2
	1.6
	2

	y
	e0
	e0.08
	
	e0.72
	
	e2


(1)

(b) 
Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures.

(3)

2.
(a) 
Use integration by parts to find 
[image: image3.wmf]ô

õ

ó

x

x

x

d

e

.

(3)

(b) 
Hence find 
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3. 

[image: image5.emf]
Figure 2

Figure 2 shows a right circular cylindrical metal rod which is expanding as it is heated. After t seconds the radius of the rod is x cm and the length of the rod is 5x cm.
The cross-sectional area of the rod is increasing at the constant rate of 0.032 cm2 s–1.

(a) 
Find 
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 when the radius of the rod is 2 cm, giving your answer to 3 significant figures.

(4)

(b) 
Find the rate of increase of the volume of the rod when x = 2.

(4)

4.
A curve has equation 3x2 – y2 + xy = 4. The points P and Q lie on the curve. The gradient of the tangent to the curve is 
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 at P and at Q.
(a) 
Use implicit differentiation to show that y – 2x = 0 at P and at Q.

(6)

(b) 
Find the coordinates of P and Q.

(3)

5.
(a) 
Expand 
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, where (x (< 
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, in ascending powers of x up to and including the term in x2. Simplify each term.

(5)

(b) 
Hence, or otherwise, find the first 3 terms in the expansion of 
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 as a series in ascending powers of x.

(4)

6.
With respect to a fixed origin O, the lines l1 and l2 are given by the equations





l1 : r = (–9i + 10k) + λ(2i + j – k)






l2 : r = (3i + j + 17k) + μ(3i – j + 5k)

where λ and μ are scalar parameters.

(a) 
Show that l1 and l2 meet and find the position vector of their point of intersection.

(6)

(b) 
Show that l1 and l2 are perpendicular to each other.

(2)
The point A has position vector 5i + 7j + 3k.

(c) 
Show that A lies on l1.

(1)
The point B is the image of A after reflection in the line l2.

(d) 
Find the position vector of B.

(3)


7.
(a) 
Express 
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 in partial fractions.

(3)

(b) 
Hence obtain the solution of 
2 cot x 
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 = (4 – y2)
  
for which y = 0 at x = 
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, giving your answer in the form sec2 x = g( y).

(8)


8.

[image: image14.emf]
Figure 3

Figure 3 shows the curve C with parametric equations
x = 8 cos t,          y = 4 sin 2t,          0 ( t ( 
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The point P lies on C and has coordinates (4, 2√3).

(a) 
Find the value of t at the point P.

(2)
The line l is a normal to C at P.
(b) 
Show that an equation for l is y = –x√3 + 6√3.

(6)

The finite region R is enclosed by the curve C, the x-axis and the line x = 4, as shown shaded in Figure 3.
(c) 
Show that the area of R is given by the integral 
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(4)

(d) 
Use this integral to find the area of R, giving your answer in the form a + b√3, where a and b are constants to be determined.

(4)
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